By Topic

A scalable cellular implementation of parallel genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Folino, G. ; ICAR-CNR, Univ. della Calabria, Rende, Italy ; Pizzuti, C. ; Spezzano, G.

A new parallel implementation of genetic programming (GP) based on the cellular model is presented and compared with both canonical GP and the island model approach. The method adopts a load-balancing policy that avoids the unequal utilization of the processors. Experimental results on benchmark problems of different complexity show the superiority of the cellular approach with respect to the canonical sequential implementation and the island model. A theoretical performance analysis reveals the high scalability of the implementation realized and allows to predict the size of the population when the number of processors and their efficiency are fixed.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 1 )