By Topic

A research on graph-based model of MAS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong-Bing Zhang ; Dept. of Manage. Sci. & Eng., Nat. Defense Univ. of Technol., Hunanchangsha, China ; Jie-Yu Zhao ; Xue-Shan Luo

The paper provides a new paradigm to use Bayesian-net model to build a new multi-agent system (MAS). We use influenced diagrams as a modeling representation of agents, which is used to interact with them to predict their behavior. We provide a framework that an agent can use to learn the model of other agents in a MAS system based on their observed behavior. Since the correct model Is usually unknown with certainty, our agents maintain a number of possible models and assign the probability of being correct Our modification refines the parameters of the influenced diagram used to model the other agent's capabilities, preferences, or beliefs. The modified model is then allowed to compete with the other models and the probability assigned to it being correct can be reached based on how well It predicts the observed behaviors of the other agent.

Published in:

Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on  (Volume:4 )

Date of Conference:

4-5 Nov. 2002