By Topic

Schematic-based lumped parameterized behavioral modeling for suspended MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Q. Jing ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; T. Mukherjee ; G. K. Fedder

Schematic-based lumped parameterized behavioral modeling and simulation methodologies have become available since the emergence of analog HDLs. They greatly ease iterative hierarchical multi-domain simulation, which is critical to the design of MEMS. NODAS is one of such tools, with models written in VerilogA and simulation performed within the Cadence framework. This paper focuses on several key modeling issues in NODAS, including schematic representation, element communication, linear, nonlinear and multi-domain modeling, and extensibility to new physical effects, processes and physical domains. A nonlinear beam model and an electrostatic gap model are discussed as examples. Simulation comparison to finite element analyses and experimental data verifies the accuracy of the models and validates the simulation methodology.

Published in:

Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International Conference on

Date of Conference:

10-14 Nov. 2002