By Topic

Current and future miniature refrigeration cooling technologies for high power microelectronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Phelan, P.E. ; Mech. & Aerosp. Eng. Dept., Arizona State Univ., Tempe, AZ, USA ; Chiriac, V.A. ; Lee, T.-Y.T.

Utilizing refrigeration may provide the only means by which future high-performance electronic chips can be maintained below predicted maximum temperature limits. Widespread application of refrigeration in electronic packaging will remain limited, until the refrigerators can be made sufficiently small so that they can be easily incorporated within the packaging. A review of existing microscale and mesoscale refrigeration systems revealed that only thermoelectric coolers (TECs) are now commercially available in small sizes. However, existing TECs are limited by their maximum cooling power and low efficiencies. A simple model was constructed to analyze the performance of both existing and predicted future TECs, in an electronic packaging environment. Comparison with the cooling provided by an existing high-performance fan shows that they are most effective for heat loads less than approximately 100 W, but that for higher heat loads, fan air cooling actually yields a lower junction temperature. Thermal resistance between the refrigerator and the chip is not as critical as the thermal resistance between the refrigerator and the ambient air.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:25 ,  Issue: 3 )