By Topic

The Knockout Switch: A Simple, Modular Architecture for High-Performance Packet Switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeh, Y.-S. ; Bell Labs., Holmdel, NJ ; Hluchyj, M.G. ; Acampora, A.

A new, high-performance packet-switching architecture, called the Knockout Switch, is proposed. The Knockout Switch uses a fully interconnected switch fabric topology (i.e., each input has a direct path to every output) so that no switch blocking occurs where packets destined for one output interfere with (i.e., block or delay) packets going to different Outputs. It is only at each output of the switch that one encounters the unavoidable congestion caused by multiple packets simultaneously arriving on different inputs all destined for the same output. Taking advantage of the inevitability of lost packets in a packet-switching network, the Knockout Switch uses a novel concentrator design at each output to reduce the number of separate buffers needed to receive simultaneously arriving packets. Following the concentrator, a shared buffer architecture provides complete sharing of all buffer memory at each output and ensures that all packets are placed on the output line on a first-in first-out basis. The Knockout Switch architecture has low latency, and is self-routing and nonblocking. Moreover, its Simple interconnection topology allows for easy modular growth along with minimal disruption and easy repair for any fault. Possible applications include interconnects for multiprocessing systems, high-speed local and metropolitan area networks, and local or toll switches for integrated traffic loads.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:5 ,  Issue: 8 )