By Topic

Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bruce, L.M. ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., MS, USA ; Koger, C.H. ; Jiang Li

In this paper, the dyadic discrete wavelet transform is proposed for feature extraction from a high-dimensional data space. The wavelet's inherent multiresolutional properties are discussed in terms related to multispectral and hyperspectral remote sensing. Furthermore, various wavelet-based features are applied to the problem of automatic classification of specific ground vegetations from hyperspectral signatures. The wavelet transform features are evaluated using an automated statistical classifier. The system is tested using hyperspectral data for various agricultural applications. The experimental results demonstrate the promising discriminant capability of the wavelet-based features. The automated classification system consistently provides over 95% and 80% classification accuracy for endmember and mixed-signature applications, respectively. When compared to conventional feature extraction methods, the wavelet transform approach is shown to significantly increase the overall classification accuracy.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 10 )