By Topic

Multiple classifiers applied to multisource remote sensing data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. J. Briem ; Dept. of Electr. & Comput. Eng., Iceland Univ., Reykjavik, Iceland ; J. A. Benediktsson ; J. R. Sveinsson

The combination of multisource remote sensing and geographic data is believed to offer improved accuracies in land cover classification. For such classification, the conventional parametric statistical classifiers, which have been applied successfully in remote sensing for the last two decades, are not appropriate, since a convenient multivariate statistical model does not exist for the data. In this paper, several single and multiple classifiers, that are appropriate for the classification of multisource remote sensing and geographic data are considered. The focus is on multiple classifiers: bagging algorithms, boosting algorithms, and consensus-theoretic classifiers. These multiple classifiers have different characteristics. The performance of the algorithms in terms of accuracies is compared for two multisource remote sensing and geographic datasets. In the experiments, the multiple classifiers outperform the single classifiers in terms of overall accuracies.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 10 )