By Topic

Urban object reconstruction using airborne laser elevation image and aerial image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Fujii ; Cyber Space Labs., Nippon Telegraph & Telephone Corp., Kanagawa, Japan ; T. Arikawa

Creating three-dimensional (3-D) models of real urban objects is an important goal in a wide variety of applications. This paper describes a method that utilizes airborne laser elevation images and aerial images for the 3-D reconstruction of urban objects. Our modeling approach uses the vertical geometric pattern analysis of elevation images. These patterns correspond to object contours and, thus, enable the extraction of the object. In addition, to provide realistic textured details, textures are cut from aerial images and mapped onto 3-D models. Our texture-mapping approach can avoid geometry mismatching and enable the automatic registration to determine the most reliable correspondence between projected outlines of 3-D models and contours of real objects shown in aerial images. Edge pairs, which are matched with projected outlines, are detected from aerial images. In order to minimize mismatching, we apply the voting technique based on the generalized Hough transform. Experimental results show that 3-D reconstruction of urban objects is generally successful.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 10 )