By Topic

Estimating terrestrial snow depth with the TOPEX-Poseidon altimeter and radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Papa, F. ; Lab. d''Etudes en Geodesie et Oceanographie Spatiales, Centre Nat. d''Etudes Spatiales, Toulouse, France ; Legresy, B. ; Mognard, N.M. ; Josberger, E.G.
more authors

Active and passive microwave measurements obtained by the dual-frequency TOPEX-Poseidon radar altimeter from the Northern Great Plains of the United States are used to develop a snow pack radar backscatter model. The model results are compared with daily time series of surface snow observations made by the U.S. National Weather Service. The model results show that Ku-band provides more accurate snow depth determinations than does C-band. Comparing the snow depth determinations derived from the TOPEX-Poseidon nadir-looking passive microwave radiometers with the oblique-looking Satellite Sensor Microwave Imager (SSM/I) passive microwave observations and surface observations shows that both instruments accurately portray the temporal characteristics of the snow depth time series. While both retrievals consistently underestimate the actual snow depths, the TOPEX-Poseidon results are more accurate.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 10 )