By Topic

Controlled microstructure oxide coatings for chemical sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Frye, G.C. ; Sandia Nat. Lab., Albuquerque, NM, USA ; Brinker, C.J. ; Bein, T. ; Ashley, C.S.
more authors

The use of porous oxide coatings, formed using sol-gel chemistry routes, as the discriminating elements of acoustic wave (AW) chemical sensors, is investigated. These coatings provide several unique advantages: durability, high adsorption capacity based on large surface areas, and chemical selectivity based on both molecular size and chemical interactions. The porosity of these coatings is determined by performing nitrogen adsorption isotherms using the AW device response to monitor the uptake of nitrogen at 77 K. The chemical sensitivity and selectivity obtained with this class of coatings is demonstrated using several examples: hydrous titanate ion exchange coatings, zeolite/silicate microcomposite coatings, and surface modified silicate films.<>

Published in:

Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE

Date of Conference:

4-7 June 1990