By Topic

Voltage dependence of hard breakdown growth and the reliability implication in thin dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Linder, B.P. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Lombardo, S. ; Stathis, J.H. ; Vayshenker, A.
more authors

Hard breakdown (HBD) is shown to be a gradual process with the gate current increasing at a predictable rate exponentially dependent on the instantaneous stress voltage and oxide thickness. This is contrary to conventional wisdom that maintains that HBD is a fast thermally driven process. The HBD degradation rate (DR) for a 15 /spl Aring/ oxide scales from >1 mA/s at 4 V to <1 nA/s at 2 V, extrapolating to <10 fA/s at use voltage. Adding the HBD evolution time to the standard time-to-breakdown potentially reduces the projected fail rate of gate dielectrics by orders of magnitude.

Published in:

Electron Device Letters, IEEE  (Volume:23 ,  Issue: 11 )