By Topic

Design rewiring using ATPG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Veneris, A. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Abadir, M.S.

Logic optimization is the step of the very large scale integration (VLSI) design cycle where the designer performs modifications on a design to satisfy different constraints such as area, power, or delay. Recently, automated test pattern generation (ATPG)-based design rewiring techniques for technology-dependent logic optimization have gained increasing popularity. In this paper, the authors propose a new operational framework to design rewiring that uses ATPG and diagnosis algorithms. They also examine its complexity requirements and discuss different implementation tradeoffs. To perform this study, the authors reduce the problem of design rewiring to the process of injecting a redundant set of multiple pattern faults. This formulation arrives at a new set of results with theoretical and practical applications. Experiments demonstrate the competitiveness of the approach and motivate future work in the area.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 12 )