By Topic

3-D Thermal-ADI: a linear-time chip level transient thermal simulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ting-Yuan Wang ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Charlie Chung-Ping Chen

Recent study shows that the nonuniform thermal distribution not only has an impact on the substrate but also interconnects. Hence, three-dimensional (3-D) thermal analysis is crucial to analyze these effects. In this paper, the authors present and develop an efficient 3-D transient thermal simulator based on the alternating direction implicit (ADI) method for temperature estimation in a 3-D environment. Their simulator, 3D Thermal-ADI, not only has a linear runtime and memory requirement, but also is unconditionally stable. Detailed analysis of the 3-D nonhomogeneous cases and boundary conditions for on-chip VLSI applications are introduced and presented. Extensive experimental results show that our algorithm is not only orders of magnitude faster than the traditional thermal simulation algorithms but also highly accurate and memory efficient. The temperature profile of steady state can also be reached in several iterations. This software will be released via the web for public usage.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:21 ,  Issue: 12 )