By Topic

Coordinated control of multi-axis tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
McKinnon, G. ; CAE Electronics Limited, Montreal, Canada ; King, M. ; Runnings, D.

The use of manipulators and the development of manipulator technology has steadily increased in recent years. Consequently, teleoperation or the remote operation of a machine or piece of equipment has also increased. Typically, teleoperation is employed in situations where the environment is dangerous or too remote for humans to work. In space exploration with the use of dextrous manipulators, teleoperation has become a critical component. This paper describes tests carried out to evaluate three man-machine interfaces with two dextrous manipulators. The three interfaces were a master/slave system with force reflection, a master slave system without force reflection, and two six degree of freedom handcontrollers. Results indicated that task accuracy was superior with the handcontrollers. The time taken to complete the tasks with the handcontroller was longer than with the master/slave system with force reflection but with force reflection removed, no differences were found.

Published in:

Robotics and Automation. Proceedings. 1987 IEEE International Conference on  (Volume:4 )

Date of Conference:

Mar 1987