By Topic

Redundancy resolution of manipulators through torque optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Hollerbach ; Massachusetts Institute of Technology, Cambridge, MA, USA ; Ki Suh

Methods for resolving kinematic redundancies of manipulators by the effect on joint torque are examined. When the generalized inverse is formulated in terms of accelerations and incorporated into the dynamics, the effect of redundancy resolution on joint torque can be directly reflected. One method chooses the joint acceleration null-space vector to minimize joint torque in a least squares sense; when the least squares is weighted by allowable torque range, the joint torques tend to be kept within their limits. Contrasting methods employing only the pseudoinverse with and without weighting by the inertia matrix are presented. The results show an unexpected stability problem during long trajectories for the null-space methods and for the inertia-weighted pseudoinverse method, but more seldom for the unweighted pseudoinverse method. Evidently, a whiplash action develops over time that thrusts the endpoint off the intended path, and extremely high torques are required to overcome these natural movement dynamics.

Published in:

IEEE Journal on Robotics and Automation  (Volume:3 ,  Issue: 4 )