By Topic

Minimizing turns for discrete movement in the interior of a polygon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reif, J.H. ; Duke University, Durham, NC, USA ; Storer, J.A.

The problem of movement in two-dimensional Euclidean space that is bounded by a (not necessarily convex) polygon is considered. Movement is restricted to be along straight line segments, and the objective is to minimize the number of bends or "turns" in a path. Most past work on this problem has addressed the movement between a source point and a destination point. An O(n ast log (n)) time algorithm is presented for computing a data structure that represents the minimal-turn paths from a source point to all other points in the polygon. An advantage of this algorithm is that it uses relatively simple data structures and is practical to implement. Another advantage is that it is easily generalized to accommodate the movement of a disk of radius r > 0.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:3 ,  Issue: 3 )