By Topic

Automatic visual solder joint inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Besl, P.J. ; University of Michigan, Ann Arbor, MI, USA ; Delp, E.J. ; Jain, R.

An approach is described for the automatic inspection of solder joints on printed circuit boards. Common defects are identified in solder joints and a joint is classified as being good or belonging to one of the defective classes. The motivation for this classification is not just the detection of defective joints, but the desire to automatically take corrective action on the assembly line. The features used for classification are based on characteristics of intensity surfaces. It is shown that features derived from facets and Gaussian curvature are effective in the classification of solder joints using a minimum-distance classification algorithm. Class separation plots are shown to be useful for quickly studying individual effectiveness of a feature or pair of features in classification. Results show the efficacy of the described approach.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:1 ,  Issue: 1 )