Cart (Loading....) | Create Account
Close category search window
 

Numerical analysis and experimental study of the error of magnetic field strength measurements with single sheet testers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakata, T. ; Okayama University, Okayama, Japan ; Takahashi, N. ; Kawase, Y. ; Nakano, M.
more authors

The error of the measurement of the magnetic field strength with a single sheet tester has been studied. Two different methods, determination by means of field sensing coils (1) and from the magnetizing current (2), have been compared. The errors of methods(1) and (2) were calculated by the finite element method (FEM), different parameters having been varied, and method (2) was additionally studied experimentally. SSTs with wound yokes and stacked yokes were considered. The results will help to decide whether the more complicated and more accurate H coil method or the easier to handle, but less accurate m.c.method is chosen.

Published in:

Magnetics, IEEE Transactions on  (Volume:22 ,  Issue: 5 )

Date of Publication:

Sep 1986

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.