By Topic

Blocking artifact detection and reduction in compressed data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. A. Triantafyllidis ; Inf. Process. Lab., Aristotle Univ. of Thessaloniki, Greece ; D. Tzovaras ; M. G. Strintzis

A novel frequency-domain technique for image blocking artifact detection and reduction is presented. The algorithm first detects the regions of the image which present visible blocking artifacts. This detection is performed in the frequency domain and uses the estimated relative quantization error calculated when the discrete cosine transform (DCT) coefficients are modeled by a Laplacian probability function. Then, for each block affected by blocking artifacts, its DC and AC coefficients are recalculated for artifact reduction. To achieve this, a closed-form representation of the optimal correction of the DCT coefficients is produced by minimizing a novel enhanced form of the mean squared difference of slope for every frequency separately. This correction of each DCT coefficient depends on the eight neighboring coefficients in the subband-like representation of the DCT transform and is constrained by the quantization upper and lower bound. Experimental results illustrating the performance of the proposed method are presented and evaluated.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:12 ,  Issue: 10 )