Cart (Loading....) | Create Account
Close category search window
 

The MESSENGER Power Distribution Unit packaging design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Le, B.Q. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Ling, S.X. ; Kennedy, L.R. ; Dakermanji, G.
more authors

A Power Distribution Unit (PDU) is being developed by The Johns Hopkins University Applied Physics Laboratory for the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft that will orbit the planet Mercury for one Earth year to complete the global mapping and the detailed characterization of the planet's exosphere, magnetosphere, surface, and interior. The PDU contains the circuitry for the spacecraft pyrotechnic firing control, power distribution switching, load current and voltage monitoring, fuses, external relay switching, reaction wheel relay selects, and power system relays. It also supports the Inertial Measurement Unit (IMU) reconfiguration, Integrated Electronic Module (IEM) select relays, solar array drives, propulsion thruster firing control, and propulsion latch valve control. To enable the mission to reach the distant planet, significant weight reduction for all spacecraft electronics must be achieved. This requirement has led to an advanced electronic packaging design that begins with component selection, printed wiring board design with very small feature sizes, and a compact interconnection scheme. The significant challenge in the packaging design of the PDU is how to implement state-of-the-art technologies to minimize system weight and meet the stringent reliability required by the MESSENGER power system. This paper will describe the detailed electronic packaging design of the PDU, including the use of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices instead of conventional mechanical relays, high-density printed wiring board designs with blind and buried vias, and a modular packaging design to achieve significant weight reduction.

Published in:

Digital Avionics Systems Conference, 2002. Proceedings. The 21st  (Volume:2 )

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.