By Topic

Human-automated judgment learning: applying interpersonal learning to investigate human interaction with alerting systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bass, E.J. ; Virginia Univ., Charlottesville, VA, USA ; Pritchett, A.R.

Alerting systems are a prevalent and integral part of modem cockpits. When alerting systems serve their intended roles in the cockpit, they can increase safety through monitoring for, and directing pilot attention to, developing hazards. However, numerous studies have identified several problematic types of interactions between pilot and alerting systems. Preventing problematic interactions between pilots and alerting systems requires a methodology that can capture and clarify the extent to which pilots will innately agree with and ultimately rely upon alerting systems. This paper details the development of Human-Automated Judgment Learning (HAJL), a new methodology attempting to provide these capabilities. The first section provides the background with regard to modeling and measuring pilot interaction with alerting systems. The next section presents the HAJL methodology. Then an initial experiment substantiating the HAJL methodology is described.

Published in:

Digital Avionics Systems Conference, 2002. Proceedings. The 21st  (Volume:2 )

Date of Conference: