By Topic

Minimum test chip sample size selection for characterizing process parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A method for determining a test-chip sample size to estimate effectively the electrical parameter distributions on an integrated circuit wafer is presented. This method gives relations among sample size and the figure of merit for four statistical techniques (trimmed mean, biweighted mean, median, and arithmetic mean) by which estimates are calculated. To demonstrate its use, the method has been applied to the evaluation of a CMOS fabrication process. Measurements on wafers completely patterned with identical test chips were used to determine actual parameter distributions for an entire wafer (true parameter values). Estimates of true parameters were determined using a site-selection plan which is representative of sampling plans used in industry. The four statistical techniques were used to compute estimates for electrical parameters and their respective figures of merit. These estimates were compared with the true parameter values determined from testing all test chips on the wafer.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:19 ,  Issue: 1 )