Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Integrated circuits for a bidirectional implantable pulsed Doppler ultrasonic blood flowmeter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The application of integrated circuits in medical implants and the complexity of these implants have increased at a rapid pace in the past few years. The need, however, still exists for a highly accurate and stable telemetry system for the measurement of blood flow. Two custom-designed ICs have been realized to resolve this problem. These ICs form the heart of a totally implantable pulsed Doppler ultrasonic bidirectional blood flowmeter; one circuit performs the basic timing functions, and the second implements low-level linear signal processing. For a small implanted package (3.8×2.8×0.8 cm/SUP 3/), these ICs must meet the stringent requirements of low-voltage operation (2.2-2.8 V), low power (<40 mW), high stability (short-term timing jitter <50 ppm), and the minimum of external components. Using a quadrature direction detecting technique, the circuits sense both positive and negative flow and produce a multiplexed telemetry signal. The approach used minimizes parts count and power drain and maximizes channel-to-channel matching in the multiplexed signal.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:13 ,  Issue: 6 )