By Topic

A reconfigurable ATM switch fabric for fault tolerance and traffic balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang, S.-C. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Silvester, J.A.

A large-scale asynchronous transfer mode (ATM) switch fabric that can be constructed with currently feasible technology is proposed. Based on analysis of the technology, it is found that module interconnection becomes the bottleneck for a large fast packet switch. Fault tolerance for the switch is achieved by dynamic reconfiguration of the module interconnection network. The design improves system reliability with relatively low hardware overhead. An abstract model of the replacement problem for the design is presented, and the problem is transformed into a well-known assignment problem. The maximum fault tolerance is found, and a fast replacement algorithm is given. The reconfiguration capability can also be used to ameliorate imbalanced traffic flows. The authors formulate this traffic flow assignment problem for the switch fabric and show that the problem is NP-hard. A simple heuristic algorithm is proposed, and an example is given

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:9 ,  Issue: 8 )