By Topic

An 8192-bit electrically alterable ROM employing a one-transistor cell with floating gate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Describes a fully decoded, TTL compatible, electrically alterable, 8-kbit MOS ROM using a two-level n-channel polysilicon gate process. The memory cell consists of a single transistor with stacked gate structure where the floating gate covers only one part of the channel and is extended to an erase overlap of the source diffusion region off the channel. Programming in typically 100 ms/word is achieved by injection of hot electrons from the short channel (3.5 /spl mu/m) into the floating gate. Electrical block erasure is performed by Fowler-Nordheim emission of electrons from the floating gate. To avoid excessive avalanche breakdown currents during erasure 40 nm-50 nm oxides at the erase overlap and a voltage ramp are used. The memory operates with standard voltages (/spl plusmn/5 V, +12 V), during read, program and erase operation, a single pulsed high voltage (+26 V) for programming, and an erase voltage ramp of +35 V maximum. Typical access time is 250 ns.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:12 ,  Issue: 5 )