By Topic

Area fill synthesis for uniform layout density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Chen ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Kahng, A.B. ; Robins, G. ; Zelikovsky, A.

Chemical-mechanical polishing (CMP) and other manufacturing steps in very deep submicron very large scale integration have varying effects on device and interconnect features, depending on local characteristics of the layout. To improve manufacturability and performance predictability, the authors seek to make a layout uniform with respect to prescribed density criteria, by inserting "area fill" geometries into the layout. In this paper, they make the following contributions. First, the authors define the flat, hierarchical, and multiple-layer filling problems, along with a unified density model description. Secondly, for the flat filling problem, they summarize current linear programming approaches with two different objectives, i.e., the Min-Var and Min-Fill objectives. They then propose several new Monte Carlo-based filling methods with fast dynamic data structures. Thirdly, they give practical iterated methods for layout density control for CMP uniformity based on linear programming, Monte Carlo, and greedy algorithms. Fourthly, to address the large data volume and inherent lack of scalability of flat layout density control, the authors propose practical methods for hierarchical layout density control. These methods smoothly trade off runtime, solution quality, and output data volume. Finally, they extend the linear programming approaches and present new Monte Carlo-based methods for the multiple-layer filling problem. Comparisons with previous filling methods show the advantages of the new iterated Monte Carlo and iterated greedy methods for both flat and hierarchical layouts and for both density models (spatial density and effective density). The authors achieve near-optimal filling for flat layouts with respect to each of these objectives. Their experiments indicate that the hybrid hierarchical filling approach is efficient, scalable, accurate, and highly competitive with existing methods (e.g., linear programming-based techniques) for hierarchical layouts.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 10 )