By Topic

Domain wall propagation on nanometer scale: coercivity of a single pinning center

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Novoselov, K.S. ; High Field Magnet Lab., Nijmegen Univ., Netherlands ; Geim, A.K. ; van der Berg, D. ; Dubonos, S.V.
more authors

Nanometer-scale movements of domain walls in uniaxial garnet films have been studied by means of micromagnetization measurements using miniature gold and semiconductor Hall probes. The high spatial resolution is achieved due to low intrinsic noise of semiconductor ballistic Hall microprobes. At low (helium) temperatures, the domain walls are found to move by discrete jumps, which we attribute to pinning on isolated defects, and we were able to measure local hysteresis loops associated with pinning on individual pinning centers. The temperature dependence of the coercive field of a single pinning center allowed us to evaluate the characteristic energy and characteristic volume of the pinning center. At higher temperatures, the character of domain wall propagation changed, and walls were found to move not only by jumps between pinning centers but also via elastic bending.

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 5 )