By Topic

Genetic programming and evolutionary generalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kushchu, I. ; Graduate Sch. of Int. Manage., Int. Univ. of Japan, Niigata, Japan

In genetic programming (GP), learning problems can be classified broadly into two types: those using data sets, as in supervised learning, and those using an environment as a source of feedback. An increasing amount of research has concentrated on the robustness or generalization ability of the programs evolved using GP. While some of the researchers report on the brittleness of the solutions evolved, others proposed methods of promoting robustness/generalization. It is important that these methods are not ad hoc and are applicable to other experimental setups. In this paper, learning concepts from traditional machine learning and a brief review of research on generalization in GP are presented. The paper also identifies problems with brittleness of solutions produced by GP and suggests a method for promoting robustness/generalization of the solutions in simulating learning behaviors using GP

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 5 )