By Topic

Cryogenic dual-mode resonator for a fly-wheel oscillator for a caesium frequency standard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tobar, M.E. ; Univ. of Western Australia, Crawley, WA, Australia ; Hartnett, J.G. ; Ivanov, E.N. ; Cros, D.
more authors

A dual-mode, sapphire-loaded cavity (SLC) resonator has been designed and optimized with the aid of finite element software. The resonance frequency was designed to be near the frequency of a Cs atomic frequency standard. Experimental tests are shown to agree very well with calculations. The difference frequency of two differently polarized modes is shown to be a highly sensitive temperature sensor in the 50 to 80 K temperature range. We show that an oscillator based on this resonator has the potential to operate with fractional frequency instability below 10/sup -14/ for measurement times of 1 to 100 seconds. This is sufficient to operate an atomic clock at the quantum projection noise limit.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 10 )