By Topic

Scalable opto-electronic network (SOENet)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. K. Gupta ; Comput. Syst. Lab., Stanford Univ., CA, USA ; W. J. Dally ; A. Singh ; B. Towles

In applications such as processor-memory interconnect, I/O networks, and router switch fabrics, an interconnection network must be scalable to thousands of high-bandwidth terminals while at the same time being economical in small configurations and robust in the presence of single-point faults. Emerging optical technology enables new topologies by allowing links to cover large distances but at a significant premium in cost compared to high-speed electrical links. Existing topologies do not cost-effectively exploit these optical links. In this paper we introduce SOENet, a family of topologies that exploits emerging high-speed optical and electrical links to provide cost effective scalability, and graceful degradation in the presence of faults. We show that SOENet scales more economically than alternative topologies. For networks scalable to 32,000 nodes, a 32-node SOENet costs 4x less than a 3-D torus. Finally we investigate the fault tolerance properties of these networks and show that they degrade more gracefully in the presence of faults than alternative topologies.

Published in:

High Performance Interconnects, 2002. Proceedings. 10th Symposium on

Date of Conference: