By Topic

Unsupervised segmentation of multispectral images using edge progression and cost function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roula, M.A. ; Sch. of Comput. Sci., Queen''s Univ. of Belfast, UK ; Bouridane, A. ; Kurugollu, F. ; Amira, A.

The paper is concerned with the development of an unsupervised segmentation algorithm for multispectral images. Due to the high dimensionality of these images, the underlining motivation of this work is on how to build up a robust unsupervised segmentation algorithm with acceptable computational complexity. After an initial approximate segmentation using the EM algorithm, a cost function associated to each pixel is proposed. This function includes a term that measures how close the pixel at hand is to the region's distribution centroids, and another term that measures the local homogeneity in the pixel's neighborhood. In addition, an edge progression technique is used to re-label pixels optimally. Extensive experiments have been carried out on many multispectral images and quantitative results have shown the efficiency of the approach.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:3 )

Date of Conference:

24-28 June 2002