Cart (Loading....) | Create Account
Close category search window
 

Highly scalable video compression using a lifting-based 3D wavelet transform with deformable mesh motion compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Secker, A. ; Univ. of New South Wales, Sydney, NSW, Australia ; Taubman, D.

This paper continues the development of a new framework for the construction of motion-compensated wavelet transforms for highly scalable video compression. The current authors recently proposed a motion adaptive wavelet transform based on motion-compensated lifting steps. This approach overcomes several limitations of existing methods. In particular, frame warping and block displacement methods cannot efficiently exploit complex motion without sacrificing invertibility. By contrast, the motion-compensated lifting transform remains invertible regardless of the motion model. The previous work was primarily in the context of a block motion model. However, block motion models inevitably yield discontinuous motion fields, which poorly represent complex motion in real video sequences. In this paper we consider the benefits of a continuous motion field, by incorporating a deformable mesh motion model into the existing framework. Experimental results show that this leads to improved compression performance. In addition, we show that the invertibility of continuous motion fields allows greater potential for compactly representing the motion information.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:3 )

Date of Conference:

22-25 Sept. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.