By Topic

Content-based image retrieval for digital mammography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I. El-Naqa ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Yongyi Yang ; N. P. Galatsanos ; M. N. Wernick

In this work, we explore the use of a learning-based framework for retrieval of relevant mammogram images from a database, for purposes of aiding diagnoses. A fundamental issue is how to characterize the notion of similarity between images for use in assessing relevance of images in the database. We investigate the use of several learning algorithms, namely, neural networks and support vector machines, in a two-stage hierarchical learning network for predicting the perceptual similarity from similarity scores collected in human-observer studies. The proposed approach is demonstrated using microcalcification clusters extracted from a database consisting of 76 mammograms. Initial results demonstrate that the proposed two-stage hierarchical learning network outperforms a single-stage learning network.

Published in:

Image Processing. 2002. Proceedings. 2002 International Conference on  (Volume:3 )

Date of Conference: