By Topic

An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. Bochobza-Degani ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; D. Elata ; Y. Nemirovsky

Pull-in parameters are important properties of electrostatic actuators. Efficient and accurate analysis tools that can capture these parameters for different design geometries, are therefore essential. Current simulation tools approach the pull-in state by iteratively adjusting the voltage applied across the actuator electrodes. The convergence rate of this scheme gradually deteriorates as the pull-in state is approached. Moreover, the convergence is inconsistent and requires many mesh and accuracy refinements to assure reliable predictions. As a result, the design procedure of electrostatically actuated MEMS devices can be time-consuming. In this paper a novel Displacement Iteration Pull-In Extraction (DIPIE) scheme is presented. The DIPIE scheme is shown to converge consistently and far more rapidly than the Voltage Iterations (VI) scheme (>100 times faster!). The DIPIE scheme requires separate mechanical and electrostatic field solvers. Therefore, it can be easily implemented in existing MOEMS CAD packages. Moreover, using the DIPIE scheme, the pull-in parameters extraction can be performed in a fully automated mode, and no user input for search bounds is required.

Published in:

Journal of Microelectromechanical Systems  (Volume:11 ,  Issue: 5 )