Cart (Loading....) | Create Account
Close category search window
 

Thermoelastic damping in fine-grained polysilicon flexural beam resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srikar, V.T. ; Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA ; Senturia, S.D.

The design and fabrication of polysilicon flexural beam resonators with very high mechanical quality factors (Q) is essential for many MEMS applications. Based on an extension of the well-established theory of thermoelastic damping in homogeneous beams, we present closed-form expressions to estimate an upper bound on the attainable quality factors of polycrystalline beam resonators with thickness (h) much larger than the average grain size (d). Associated with each of these length scales is an independent damping mechanism; we refer to them as Zener and intracrystalline thermoelastic damping, respectively. For representative polysilicon beam resonators (h = 2 μm; d = 0.1 μm) at 300 K, the predicted critical frequencies for these two mechanisms are ∼7 MHz and ∼14 GHz, respectively. The model is consistent with data from the literature in the sense that the measured values approach, but do not exceed, the calculated thermoelastic limit. From the viewpoint of the maximum attainable Q, our model suggests that single-crystal silicon, rather than fine-grained polysilicon, is the material of choice for the fabrication of flexural beam resonators for applications in the gigahertz frequency range.

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 5 )

Date of Publication:

Oct 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.