By Topic

A computationally efficient discrete Backus-Gilbert footprint-matching algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. J. Stephens ; Dept. of Phys., Cambridge Univ., UK ; A. S. Jones

A computationally efficient discrete Backus-Gilbert (BG) method is derived that is appropriate for resolution-matching applications using oversampled data. The method builds upon existing BG methods and approximation techniques to create a modified set of BG coefficients. The method in its current form is restricted to a resolution-only minimization constraint, but in the future could be extended to use a simultaneous noise minimization constraint using a generalized singular value decomposition (GSVD) approach. A theoretical one-dimensional intercomparison is performed using a hypothetical sensor configuration. A comparison of the discrete BG method with a nondiscrete BG method shows that the new approach can be 250% more efficient while maintaining similar accuracies. In addition, an SVD approximation increases the computational efficiencies an additional 43%-106%, depending upon the scene. Several quadrature methods were also tested. The results suggest that accuracy improvements are possible using customized quadrature in regions containing known physical data discontinuities (such as along coastlines in microwave imagery data). The ability to recompute the modified BG coefficients dynamically at lower computational cost makes this work applicable toward applications in which noise may vary, or where data observations are not available consistently (e.g. in radio frequency interference contaminated environments).

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 8 )