Cart (Loading....) | Create Account
Close category search window
 

Contextual clustering for image labeling: an application to degraded forest assessment in Landsat TM images of the Brazilian Amazon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sgrenzaroli, M. ; 3DVERITAS, Sesto Calende, Italy ; Baraldi, A. ; Eva, H. ; De Grandi, G.
more authors

The modified adaptive pappas clustering (MPAC) algorithm, previously published in the image processing literature, is proposed as a valuable tool in the analysis of remotely sensed images where texture information is negligible. Owing to its contextual, adaptive, and multiresolutional labeling approach, MPAC preserves genuine but small regions, is easy to use (i.e., it requires minor user interaction to run), and is robust to changes in input parameters. As an application example, an MPAC-based three-stage classifier is applied to degraded forest detection in Landsat Thematic Mapper (TM) scenes of the Brazilian Amazon, where intermediate states of forest alterations caused by anthropogenic activities can be characterized by image structures 1-3 pixels wide. In three TM images of the Para test site, where classification results are validated by means of qualitative and quantitative comparisons with aerial photos, degraded forest areas cover 13% to 45% of the image ground coverage. In the Mato Grosso test site, the degraded forest class overlaps with 1) 10% of the closed-canopy forest detected by the deforestation mapping program of the Food and Agriculture Organization (FAO, 1992), and 2) 19% of the closed-canopy forest detected by the Tropical Rain Forest Information Center (TRFIC, 1996). These figures are in line with the conclusions of a study where present estimates of annual deforestation for the Brazilian Amazon are speculated to capture less than half of the forest area that is actually impoverished each year.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 8 )

Date of Publication:

Aug 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.