By Topic

CLARANS: a method for clustering objects for spatial data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ng, R.T. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; Jiawei Han

Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. To this end, this paper has three main contributions. First, it proposes a new clustering method called CLARANS, whose aim is to identify spatial structures that may be present in the data. Experimental results indicate that, when compared with existing clustering methods, CLARANS is very efficient and effective. Second, the paper investigates how CLARANS can handle not only point objects, but also polygon objects efficiently. One of the methods considered, called the IR-approximation, is very efficient in clustering convex and nonconvex polygon objects. Third, building on top of CLARANS, the paper develops two spatial data mining algorithms that aim to discover relationships between spatial and nonspatial attributes. Both algorithms can discover knowledge that is difficult to find with existing spatial data mining algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 5 )