By Topic

Using kernel couplings to predict parallel application performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
V. Taylor ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Xingfu Wu ; J. Geisler ; R. Stevens

Performance models provide significant insight into the performance relationships between an application and the system used for execution. The major obstacle to developing performance models is the lack of knowledge about the performance relationships between the different functions that compose an application. This paper addresses the issue by using a coupling parameter, which quantifies the interaction between kernels, to develop performance predictions. The results, using three NAS parallel application benchmarks, indicate that the predictions using the coupling parameter were greatly improved over a traditional technique of summing the execution times of the individual kernels in an application. In one case the coupling predictor had less than 1% relative error in contrast the summation methodology that had over 20% relative error. Further, as the problem size and number of processors scale, the coupling values go through a finite number of major value changes that is dependent on the memory subsystem of the processor architecture.

Published in:

High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium on

Date of Conference: