By Topic

Assessing cloud contamination effects on K-means unsupervised classifications of Landsat data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Esche, H./A/. ; Calgary Univ., Alta., Canada ; Franklin, S.E.

Satellite data, such as obtained by Landsat 5 or 7 sensors, can be effectively used for large-area land cover classifications. Given that approximately 50% of the Earth is covered in cloud at any time, one of the significant challenges in creating repeatable and robust classifications is to understand and appropriately address cloud contamination in Landsat images. The scope of many of the large area mapping projects and the associated large volumes of data to be processed suggest that unsupervised classifications and automated processes may be necessary to obtain timely results. An experiment was developed to investigate the effect of cloud contamination on unsupervised classifications. It was determined that when a small number of classes are used cloud effects in the cloud-free portion of the scene can often be managed by allocating the majority of clusters to clouds. When a large number of classes are required, clouds significantly skew the non-cloud cluster characteristics.

Published in:

Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International  (Volume:6 )

Date of Conference: