Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

xPF: packet filtering for low-cost network monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ioannidis, S. ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; Anagnostakis, K.G. ; Ioannidis, J. ; Keromytis, A.D.

The ever-increasing complexity in network infrastructures is making critical the demand for network monitoring tools. While the majority of network operators rely on low-cost open-source tools based on commodity hardware and operating systems, the increasing link speeds and complexity of network monitoring applications have revealed inefficiencies in the existing software organization, which may prohibit the use of such tools in high-speed networks. Although several new architectures have been proposed to address these problems, they require significant effort in re-engineering the existing body of applications. We present an alternative approach that addresses the primary sources of inefficiency without significantly altering the software structure. Specifically, we enhance the computational model of the Berkeley packet filter (BPF) to move much of the processing associated with monitoring into the kernel, thereby removing the overhead associated with context switching between kernel and applications. The resulting packet filter, called xPF, allows new tools to be more efficiently implemented and existing tools to be easily optimized for high-speed networks. We present the design and implementation of xPF as well as several example applications that demonstrate the efficiency of our approach.

Published in:

High Performance Switching and Routing, 2002. Merging Optical and IP Technologies. Workshop on

Date of Conference: