Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Two dimensional PN functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Horadam, K.J. ; Dept. of Math., R. Melbourne Inst. of Technol., Vic., Australia

There is a differential operator ∂ mapping 1D functions φ:G→C to 2D functions ∂φ: G×G→C which are coboundaries, the simplest form of cocycle. Perfect nonlinear (PN) 1D functions determine coboundaries with balanced partial derivatives. We use this property to define 2D PN and differentially k-uniform functions. We list the known PN permutations of GF(pa) as specific 2D PN coboundaries and show ∂ has an inverse for these PN functions. There are many more families of 2D PN cocycles on GF(pa) than those arising as coboundaries, even when p=2 (no 1D PN functions for p=2 exist; APN is the best possible). These ideas can be extended to include APN and differentially k-uniform 2D cocycles.

Published in:

Information Theory, 2002. Proceedings. 2002 IEEE International Symposium on

Date of Conference:

2002