By Topic

Asymptotic optimality of the GMD and Chase decoding algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuansheng Tang ; Dept. of Informatics & Math. Sci., Osaka Univ., Japan ; Fujiwara, T. ; Kasami, T.

The generalized minimum distance (GMD) and Chase (1972) decoding algorithms are some of the most important suboptimum bounded distance decoding algorithms for binary linear block codes over an additive white Gaussian noise (AWGN) channel. We compute the limitation of the ratio between the probability of decoding error for the GMD or any one of the Chase decoding algorithms and that of the maximum-likelihood (ML) decoding when the signal-to-noise ratio (SNR) approaches infinity. If the minimum Hamming distance of the code is greater than 2, the limitation is shown to be equal to 1 and thus the GMD and Chase decoding algorithms are asymptotically optimum.

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 8 )