By Topic

Model clamp: a computer tool to probe action potential transfer between cardiac cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Wilders, R. ; Dept. of Physiol., Amsterdam Univ., Netherlands ; Verkerk, Arie O. ; Verheijck, E.E. ; van Ginneken, A.C.G.
more authors

In the early nineties, Joyner and coworkers introduced the "coupling clamp" technique in which an isolated cardiac cell can be electrically coupled to either another isolated cardiac cell or to an analog model cell (RC circuit). In brief, an amplifier system does a continuous analog computation of the current that would be flowing between the two cells if there had been an intercellular coupling conductance Gc, and then provides current inputs to the cells accordingly. Building on this concept, we developed the computer-controlled "model clamp" technique, in which an isolated cardiac cell is dynamically coupled in real time to a comprehensive mathematical cell model (e.g., the phase-2 Luo-Rudy model). With this system we have the ability to vary coupling conductance, effective size of both model cell and real cell, and intrinsic cellular properties of the model cell. In courses on cardiac electrophysiology, the model clamp system provides a useful computer tool to probe action potential transfer between cardiac cells. It can be used to assess alterations in the critical value of coupling conductance required for action potential transfer from a real ventricular cell to the Luo-Rudy model ventricular cell upon exposure of the real cell to, e.g., noradrenaline.

Published in:

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE  (Volume:4 )

Date of Conference: