Cart (Loading....) | Create Account
Close category search window
 

Multiple antennas in cellular CDMA systems: transmission, detection, and spectral efficiency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, H. ; Lucent Technol. Bell Labs., Holmdel, NJ, USA ; Viswanathan, H. ; Foschini, G.J.

Providing wireless high-speed packet data services for Web browsing and streaming multimedia applications will be a key feature in future code-division multiple-access (CDMA) systems. We study down-link CDMA schemes for providing such services using multiple antennas at the transmitter and receiver. We propose a generalization of the point-to-point narrowband Bell Labs layered space-time (BLAST) system to a wideband multiple access system which simultaneously supports multiple users through code spreading. We discuss transmission options for achieving transmit diversity and spatial separation and introduce a generalization of the vertical BLAST detector for CDMA signals. Using link level simulations, we determine the bit-error rates versus signal-to-interference ratio of the various transmitter options. We then describe a novel technique for determining the system spectral efficiency (measured in bits per second per Hertz per cell sector) by incorporating the link level results with system level outage simulations. Using four antennas at the transmitter and eight antennas at each receiver, the system can support multiple receivers at 16 times the voice rate, resulting in a system spectral efficiency an order magnitude higher than a conventional single-antenna voice system

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 3 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.