By Topic

Optimal remapping in dynamic bulk synchronous computations via a stochastic control approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yin, G. ; Dept. of Math., Wayne State Univ., Detroit, MI, USA ; Cheng-Zhong Xu ; Le Yi Wang

A bulk synchronous computation proceeds in phases that are separated by barrier synchronization. For dynamic bulk synchronous computations that exhibit varying phase-wise computational requirements, remapping at run-time is an effective approach to ensure parallel efficiency. This paper introduces a novel remapping strategy for computations whose workload changes can be modeled as a Markov chain. It is shown that optimal remapping cart be formulated as a binary decision process: remap or not at a given synchronizing instant. The optimal strategy is then developed for long lasted computations by employing optimal stopping rules in a stochastic control framework. The existence of optimal controls is established. Necessary and sufficient conditions for the optimality are obtained. Furthermore, a policy iteration algorithm is devised to reduce computational complexity and enhance fast convergence to the desired optimal control.

Published in:

Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM

Date of Conference:

15-19 April 2001