By Topic

A space-efficient flash translation layer for CompactFlash systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jesung Kim ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ., South Korea ; Jong Min Kim ; Noh, S.H. ; Sang Lyul Min
more authors

Flash memory is becoming increasingly important as nonvolatile storage for mobile consumer electronics due to its low power consumption and shock resistance. However, it imposes technical challenges in that a write should be preceded by an erase operation, and that this erase operation can be performed only in a unit much larger than the write unit. To address these technical hurdles, an intermediate software layer called a flash translation layer (FTL) is generally employed to redirect logical addresses from the host system to physical addresses in flash memory. Previous approaches have performed this address translation at the granularity of either a write unit (page) or an erase unit (block). We propose a novel FTL design that combines the two different granularities in address translation. This is motivated by the idea that coarse grain address translation lowers the resources required to maintain translation information, which is crucial in mobile consumer products for cost and power consumption reasons, while fine grain address translation is efficient in handling small size writes. Performance evaluation based on trace-driven simulation shows that the proposed scheme significantly outperforms previously proposed approaches

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 2 )