By Topic

Cluster number selection for a small set of samples using the Bayesian Ying-Yang model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Guo ; Dept. of Comput. Sci., Beijing Normal Univ., China ; C. L. P. Chen ; M. R. Lyu

One major problem in cluster analysis is the determination of the number of clusters. In this paper, we describe both theoretical and experimental results in determining the cluster number for a small set of samples using the Bayesian-Kullback Ying-Yang (BYY) model selection criterion. Under the second-order approximation, we derive a new equation for estimating the smoothing parameter in the cost function. Finally, we propose a gradient descent smoothing parameter estimation approach that avoids complicated integration procedure and gives the same optimal result

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 3 )