Cart (Loading....) | Create Account
Close category search window
 

Conformational Molecular Switches for Post-CMOS Nanoelectronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

Theoretical treatments forecast that bistable CMOS devices using electronic charge as a state variable will operate at their maximum thermal dissipation limit possibly as early as 2012. The problem is further compounded by increasing manufacturing challenges associated with the ever decreasing logic switch dimensions. These challenges require the development of new fabrication strategies that replace or complement current top-down lithography with bottom-up protocols using controlled self-assembly of nanomaterial building blocks. To answer some of these issues, this paper focuses on a new device paradigm consisting of an arene-metal-arene conformational switch, addressable through capacitive, inductive, or resonant-tunneling field coupling. The operating principle is based on voltage-tunable modulation in quantum electron transmission. The switch is open (off) when the metal ion is displaced to a position at a C-H bond on the arene ring due to an externally applied bias. Conversely, when the external bias is removed, the metal ion moves to an axis- symmetric position on the arene ring, and the switch is closed (on). The paper presents a summary of the architecture, operating principle, and advantages of the conformational switch, along with associated findings from proof-of-concept theoretical and experimental studies of its target specifications and performance. The paper also discusses opportunities and challenges related to the integration of conformational switches into hybrid CMOS-molecular and monolithic (all molecular) circuits.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.