Cart (Loading....) | Create Account
Close category search window
 

Stabilization via Nonsmooth, Nonconvex Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Burke, J.V. ; Dept. of Math., Univ. of Washington, Seattle, WA ; Henrion, D. ; Lewis, A.S. ; Overton, M.L.

Nonsmooth variational analysis and related computational methods are powerful tools that can be effectively applied to identify local minimizers of nonconvex optimization problems arising in fixed-order controller design. We support this claim by applying nonsmooth analysis and methods to a challenging "Belgian chocolate" stabilization problem posed in 1994: find a stable, minimum phase, rational controller that stabilizes a specified second-order plant. Although easily stated, this particular problem remained unsolved until 2002, when a solution was found using an eleventh-order controller. Our computational methods find a stabilizing third-order controller without difficulty, suggesting explicit formulas for the controller and for the closed loop system, which has only one pole with multiplicity 5. Furthermore, our analytical techniques prove that this controller is locally optimal in the sense that there is no nearby controller with the same order for which the closed loop system has all its poles further left in the complex plane. Although the focus of the paper is stabilization, once a stabilizing controller is obtained, the same computational techniques can be used to optimize various measures of the closed loop system, including its complex stability radius or Hinfin performance

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.